However the 6foot6 offensive lineman was part o

However, the 6-foot-6 offensive lineman was part of a Cavaliers’ offensive line that blocked for the school’s first 1,000-yard rusher since 2004.If the Cardinals do in fact select Moses in April, he’d become the first left tackle taken by the team in the first round since Levi Brown back in 2007. For diehard football fans who savor the wall-to-wall coverage that annually surrounds the NFL Draft, Christmas has come early.In an ESPN insider piece, analyst Todd McShay revealed his first 2014 Mock Draft this week, and not surprisingly he has the Arizona Cardinals addressing a position of need in the first round.With the No. 22 pick, McShay projects the Cardinals will take Virginia left tackle Morgan Moses.Quarterback is a need position for the Cardinals, but there isn’t one worth drafting at this spot. They’d be better off getting a guy like LSU’s Zach Mettenberger on Day 2. Arizona’s next-biggest need is offensive tackle, and Moses offers good value here. Nobody knows who he is because he was an O-lineman on a bad college team, but he was one of the most improved players I saw on tape this season. He has good physical tools, and he looked so much more comfortable at left tackle in 2013 than he did at right tackle in previous years. He has the potential to develop into a good starting left tackle. Moses started 23 of Virginia’s last 24 games dating back to his junior season, however he’s rather new to left tackle — having made the move to the position just prior to the 2013 campaign. Former Cardinals kicker Phil Dawson retires Top Stories The 5: Takeaways from the Coyotes’ introduction of Alex Meruelo 0 Comments   Share   Derrick Hall satisfied with D-backs’ buying and selling Grace expects Greinke trade to have emotional impact read more

Sudden death in epilepsy Researchers finger possible cause

first_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country A different piece of the SUDEP puzzle had emerged a few years before, when Noebels’s lab found that mutations in a gene associated with sudden cardiac death in people predisposed mice to epilepsy and SUDEP. Cardiologists then noted that patients with similar cardiac gene mutations also had epilepsy. Although the whole picture was still hazy, this suggested that certain gene mutations might put patients at risk for both brain and heart disorders. The defective gene Noebels studied in mice clearly wasn’t enough to trigger SUDEP on its own, however—many epilepsy patients have similar mutations, but they also have an apparently normal life span.To learn more, Noebels and postdoctoral neuroscientist fellow Isamu Aiba at Baylor created two different SUDEP mouse models. One had mutations in a potassium ion channel gene, which disrupts the normal firing of neurons; another had mutations in a sodium ion channel gene with a similar function. Both genes are linked to SUDEP in people, and the sodium channel mutation can cause Dravet syndrome, a particularly aggressive form of epilepsy in children with a high SUDEP risk.The researchers then induced seizures in the animals and monitored activity in the brain stem and elsewhere in the brain. Nine of 18 mice had what’s called “spreading depolarization” in their brain stem—essentially, a shutdown of electric activity that sweeps across the critical brain region and silences neurons. Spreading depolarization has been recorded in other neurologic conditions, but it usually happens in parts of the brain where it’s not normally fatal. For example, depolarization seems to cause the perceptual “aura” described by migraine sufferers. But in the mouse models of SUDEP, “the spreading depolarization is noxious because it’s occurring in a very critical tissue” that controls breathing and heart function, says Michael Moskowitz, a neuroscientist at Harvard Medical School in Boston, who has studied the phenomenon for years.Noebels and Aiba also found that in 15 animals without the gene mutations, inducing seizures didn’t cause spreading depolarization. Instead, the mice recovered from the seizure afterward—just like most people with epilepsy do.Examining tissue from the animals’ brain stems in the lab, Noebels and Aiba found that they could generate spreading depolarization far more easily in the mutant animals than in normal ones. They also found that the mutant animal tissue responded more readily to their efforts to induce spreading depolarization after death, by changing the chemical solution in which the samples were bathed. Noebels wonders if the gene mutations might make it easier for spreading depolarization to take hold. “The threshold for this kind of event is reduced” by expressing these mutations, Moskowitz agrees.The study, Schuele says, is fascinating. “It’s the first paper that gives us an understanding of the potential mechanism.” Still, there’s much more to do to bolster the theory. He’s curious whether spreading depolarization will show up in other mouse SUDEP models and whether it’s detectable in people who don’t have these rare mutations. It’s also still unclear how seizures might cause spreading depolarization in the brain stem, and how to identify those at highest risk. Some patients are known to have abnormal responses during seizures, such as difficulty breathing or an erratic heart rate, as well as abnormal flattening of electrical activity in their cortexes — all of which might put them at increased risk, Noebels says.There’s hope that certain drugs can inhibit spreading depolarization, including some migraine therapies and antidepressants. If those at highest risk can be identified, Schuele says, it might make sense to “selectively treat patients” with medications that aren’t part of the usual epilepsy regimen. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Emailcenter_img Sudden death, a mysterious and devastating outcome of epilepsy, could result from a brain stem shutdown following a seizure, researchers report today in Science Translational Medicine. Although the idea is still preliminary, it’s engendering hope that neurologists are one step closer to intervening before death strikes.Sudden unexpected death in epilepsy (SUDEP) has long bedeviled doctors and left heartbroken families in its wake. “It’s as big a mystery as epilepsy itself,” says Jeffrey Noebels, a neurologist at Baylor College of Medicine in Houston, Texas, and the senior author of the new paper. As its name suggests, SUDEP attacks without warning: People with epilepsy are found dead, often following a seizure, sometimes face down in bed. Many are young—the median age is 20—and patients with uncontrolled generalized seizures, the most severe type, are at highest risk. About 3000 people are thought to die of SUDEP each year in the United States. And doctors have struggled to understand why. “How can you have seizures your whole life, and all of a sudden, it’s your last one?” Noebels asks.In 2013, an international team of researchers described its study of epilepsy patients who had died while on hospital monitoring units. In 10 SUDEP cases for which they had the patients’ heart function and breathing patterns, the authors found that the patients’ cardiorespiratory systems collapsed over several minutes, and their brain activity was severely depressed. “Their EEG went flat after a seizure,” says Stephan Schuele, an epileptologist at Northwestern University Feinberg School of Medicine in Chicago, Illinois, who wasn’t involved in the study. Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img read more